Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Infect ; 85(3): 306-317, 2022 09.
Article in English | MEDLINE | ID: covidwho-1895207

ABSTRACT

OBJECTIVES: We aimed to evaluate the safety and optimal dose of a novel inactivated whole-virus adjuvanted vaccine against SARS-CoV-2: VLA2001. METHODS: We conducted an open-label, dose-escalation study followed by a double-blind randomized trial using low, medium and high doses of VLA2001 (1:1:1). The primary safety outcome was the frequency and severity of solicited local and systemic reactions within 7 days after vaccination. The primary immunogenicity outcome was the geometric mean titre (GMT) of neutralizing antibodies against SARS-CoV-2 two weeks after the second vaccination. The study is registered as NCT04671017. RESULTS: Between December 16, 2020, and June 3, 2021, 153 healthy adults aged 18-55 years were recruited in the UK. Overall, 81.7% of the participants reported a solicited AE, with injection site tenderness (58.2%) and headache (46.4%) being the most frequent. Only 2 participants reported a severe solicited event. Up to day 106, 131 (85.6%) participants had reported any AE. All observed incidents were transient and non-life threatening in nature. Immunogenicity measured at 2 weeks after completion of the two-dose priming schedule, showed significantly higher GMTs of SARS-CoV-2 neutralizing antibody titres in the highest dose group (GMT 545.6; 95% CI: 428.1, 695.4) which were similar to a panel of convalescent sera (GMT 526.9; 95% CI: 336.5, 825.1). Seroconversion rates of neutralizing antibodies were also significantly higher in the high-dose group (>90%) compared to the other dose groups. In the high dose group, antigen-specific IFN-γ expressing T-cells reactive against the S, M and N proteins were observed in 76, 36 and 49%, respectively. CONCLUSIONS: VLA2001 was well tolerated in all tested dose groups, and no safety signal of concern was identified. The highest dose group showed statistically significantly stronger immunogenicity with similar tolerability and safety, and was selected for phase 3 clinical development.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19/therapy , COVID-19 Vaccines/adverse effects , Double-Blind Method , Humans , Immunization, Passive , Immunogenicity, Vaccine , SARS-CoV-2 , COVID-19 Serotherapy
2.
Data Science for COVID-19: Volume 2: Societal and Medical Perspectives ; : 397-422, 2021.
Article in English | Scopus | ID: covidwho-1872866

ABSTRACT

The coronavirus family is as old as the 1930s when it first showed symptoms in chicken. The virus thereafter kept evolving and it has significantly taken over a large percentage of people worldwide in the form of this new pandemic. As of the present day, there is no treatment available for coronavirus disease 2019 (COVID-19) (caused by the severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]), although supportive therapy and preventive measures have shown a tremendous control rate among certain patients. Drugs like remdesivir, camostat, nafamostat, ritonavir/lopinavir, several monoclonal antibodies, and CPs are in their early phases of trials. There are approved by the WHO under an emergency use authorization program. Favipiravir has entered its phase 3 clinical trial and is supported by evidence to show no or less adverse effects in patients infected with SARS-CoV-2. Vaccine development is accelerating its pace, and vaccines will probably become available by the end of the year 2020. © 2022 Elsevier Inc.

3.
Clin Infect Dis ; 75(1): e905-e908, 2022 Aug 24.
Article in English | MEDLINE | ID: covidwho-1852988

ABSTRACT

This retrospective study of incoming travelers with coronavirus disease 2019 showed that individuals immunized by messenger RNA vaccines had significantly longer postvaccination intervals (median, 30.5 days) to breakthrough infection, lower white blood cell counts and lactate dehydrogenase levels on admission, and fewer radiographic abnormalities than those immunized by inactivated virus vaccine, who paradoxically had lower respiratory viral load.


Subject(s)
COVID-19 , Viral Vaccines , COVID-19/prevention & control , COVID-19 Vaccines , Humans , RNA, Messenger , Retrospective Studies , Vaccines, Inactivated , mRNA Vaccines
4.
Vaccines (Basel) ; 10(2)2022 Feb 07.
Article in English | MEDLINE | ID: covidwho-1715827

ABSTRACT

Hepatitis C virus (HCV) infections pose a major public health burden due to high chronicity rates and associated morbidity and mortality. A vaccine protecting against chronic infection is not available but would be important for global control of HCV infections. In this study, cell culture-based HCV production was established in a packed-bed bioreactor (CelCradle™) aiming to further the development of an inactivated whole virus vaccine and to facilitate virological and immunological studies requiring large quantities of virus particles. HCV was produced in human hepatoma-derived Huh7.5 cells maintained in serum-free medium on days of virus harvesting. Highest virus yields were obtained when the culture was maintained with two medium exchanges per day. However, increasing the total number of cells in the culture vessel negatively impacted infectivity titers. Peak infectivity titers of up to 7.2 log10 focus forming units (FFU)/mL, accumulated virus yields of up to 5.9 × 1010 FFU, and a cell specific virus yield of up to 41 FFU/cell were obtained from one CelCradle™. CelCradle™-derived and T flask-derived virus had similar characteristics regarding neutralization sensitivity and buoyant density. This packed-bed tide-motion system is available with larger vessels and may thus be a promising platform for large-scale HCV production.

5.
Med Res Arch ; 9(7)2021 Jul.
Article in English | MEDLINE | ID: covidwho-1547876

ABSTRACT

The appearance of variants of mutated virus in course of the Covid-19 pandemic raises concerns regarding the risk of possible formation of variants that can evade the protective immune response elicited by the single antigen S-protein gene-based vaccines. This risk may be avoided by inclusion of several antigens in vaccines, so that a variant that evades the immune response to the S-protein of SARS-CoV-2 virus will be destroyed by the protective immune response against other viral antigens. A simple way for preparing multi-antigenic enveloped-virus vaccines is using the inactivated whole-virus as vaccine. However, immunogenicity of such vaccines may be suboptimal because of poor uptake of the vaccine by antigen-presenting-cells (APC) due to electrostatic repulsion by the negative charges of sialic-acid on both the glycan-shield of the vaccinating virus and on the carbohydrate-chains (glycans) of APC. In addition, glycan-shield can mask many antigenic peptides. These effects of the glycan-shield can be reduced and immunogenicity of the vaccinating virus markedly increased by glycoengineering viral glycans for replacing sialic-acid units on glycans with α-gal epitopes (Galα1-3Galß1-4GlcNAc-R). Vaccination of humans with inactivated whole-virus presenting α-gal epitopes (virusα-gal) results in formation of immune-complexes with the abundant natural anti-Gal antibody that binds to viral α-gal epitopes at the vaccination site. These immune-complexes are targeted to APC for rigorous uptake due to binding of the Fc portion of immunecomplexed anti-Gal to Fcγ receptors on APC. The APC further transport the large amounts of internalized vaccinating virus to regional lymph nodes, process and present the virus antigenic peptides for the activation of many clones of virus specific helper and cytotoxic T-cells. This elicits a protective cellular and humoral immune response against multiple viral antigens and an effective immunological memory. The immune response to virusα-gal vaccine was studied in mice producing anti-Gal and immunized with inactivated influenza-virusα-gal. These mice demonstrated 100-fold increase in titer of the antibodies produced, a marked increase in T-cell response, and a near complete protection against challenge with a lethal dose of live influenza-virus, in comparison to a similar vaccine lacking α-gal epitopes. This glycoengineering can be achieved in vitro by enzymatic reaction with neuraminidase removing sialic-acid and with recombinant α1,3galactosyltransferase (α1,3GT) synthesizing α-gal epitopes, by engineering host-cells to contain several copies of the α1,3GT gene (GGTA1), or by transduction of this gene in a replication-defective adenovirus vector into host-cells. Theoretically, these methods for increased immunogenicity may be applicable to all enveloped viruses with N-glycans on their envelope.

6.
Vaccines (Basel) ; 9(7)2021 Jun 29.
Article in English | MEDLINE | ID: covidwho-1289045

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has demonstrated the value of pursuing different vaccine strategies. Vaccines based on whole viruses, a widely used vaccine technology, depend on efficient virus production. This study aimed to establish SARS-CoV-2 production in the scalable packed-bed CelCradleTM 500-AP bioreactor. CelCradleTM 500-AP bottles with 0.5 L working volume and 5.5 g BioNOC™ II carriers were seeded with 1.5 × 108 Vero (WHO) cells, approved for vaccine production, in animal component-free medium and infected at a multiplicity of infection of 0.006 at a total cell number of 2.2-2.5 × 109 cells/bottle seven days post cell seeding. Among several tested conditions, two harvests per day and a virus production temperature of 33 °C resulted in the highest virus yield with a peak SARS-CoV-2 infectivity titer of 7.3 log10 50% tissue culture infectious dose (TCID50)/mL at 72 h post-infection. Six harvests had titers of ≥6.5 log10 TCID50/mL, and a total of 10.5 log10 TCID50 were produced in ~5 L. While trypsin was reported to enhance virus spread in cell culture, addition of 0.5% recombinant trypsin after infection did not improve virus yields. Overall, we demonstrated successful animal component-free production of SARS-CoV-2 in well-characterized Vero (WHO) cells in a scalable packed-bed bioreactor.

SELECTION OF CITATIONS
SEARCH DETAIL